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1. Introduction

In recent years it has been realized that, even at the classical level, gravity exhibits a much

richer structure in higher dimensions than in four dimensions.

Black string solutions, present for D ≥ 5 spacetime dimensions, are of particular

interest, since they exhibit new features that have no analogue in the black hole case.

Such configurations are important if one supposes the existence of extradimensions in the

universe, which are likely to be compact and described by a Kaluza-Klein (KK) theory.

The simplest vacuum static solution of this type is found by assuming translational

symmetry along the extracoordinate direction, and corresponds to a uniform black string

with horizon topology SD−3 × S1. Although this solution exists for all values of the mass,

it is unstable below a critical value as shown by Gregory and Laflamme [1]. This instability

was interpreted to mean that a light uniform string decays to a black hole since that has

higher entropy. However, Horowitz and Maeda [2] argued that the horizon could not pinch

off, so the end state of the instability could not be a collection of separate black holes.

Instead, they conjectured that the solution would settle down to a non-translationally

invariant solution with the same horizon topology as the original configuration.
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This prompted a search for this missing link, and a branch of static nonuniform black

string solutions was subsequently found by perturbing the uniform black string by the

threshold unstable mode. The D = 5 approximate solutions were obtained in [3], perturbed

D = 6 were presented in [4], and higher dimensional generalizations were discussed in [5].

Despite some attempts, no analytic solutions are available for nonuniform black string

solutions and one has to employ numerical techniques. At present, the nonuniform branch

is numerically known only for D = 6 [4] (see also the post-analysis in [6, 7]).

Apart from the black string solutions, KK theory possesses also a branch of black

hole solutions with an event horizon of topology SD−2. The numerical results presented

in [8] (following a conjecture put forward in [9]) suggest that, at least for D = 6, the black

hole and the nonuniform string branches merge at a topology changing transition. Still, a

number of aspects remain to be clarified, and the literature on nonuniform black string and

black hole solutions in KK theory is continuously growing (see [10, 11] for recent reviews).

The main purpose of this paper is to numerically construct and study the nonuniform

black string branch in D = 5. This dimension is of particular interest since one may join

the black string results with those of the D = 5 black hole branch discussed in [8] (see

also [12]).

We begin with a presentation of the general ansatz and the relevant quantities for an

arbitrary spacetime dimension D. In this context, we propose to compute the mass, tension

and action of the nonuniform black string solutions by using a quasilocal formalism. In

section 3 we present our numerical results. We demonstrate that for D = 5 a branch of

nonuniform black string solutions exists, at least within the scope of our numerical approx-

imation. The numerical methods used here are rather different from the methods employed

to obtain the D = 6 solutions [4]. We construct nonuniform black string solutions also in

D = 6 dimensions, extending the known set of solutions [4] to larger deformation of the

event horizon. In section 4 solutions of the Einstein-Maxwell-dilaton (EMD) equations are

generated from the vacuum configurations, by using a Harrison transformation originally

derived in [13]. The basic properties of two different types of solutions, corresponding to

charged black strings which asymptote to MD−1 × S1 and black strings in a background

magnetic field are discussed there. We give our conclusions and remarks in the final section.

The appendix contains a brief discussion of some numerical aspects of our solutions.

2. General ansatz and properties of the solutions

2.1 The equations and boundary conditions

We consider the Einstein action

I =
1

16πG

∫

M
dDx

√−gR − 1

8πG

∫

∂M
dD−1x

√
−hK , (2.1)

in a D−dimensional spacetime. The last term in (2.1) is the Hawking-Gibbons surface

term [14], which is required in order to have a well-defined variational principle. K is the

trace of the extrinsic curvature for the boundary ∂M and h is the induced metric of the

boundary.
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We consider black string solutions approaching asymptotically the D − 1 dimensional

Minkowski-space times a circle MD−1×S1. We denote the compact direction as z = xD−1

and the directions of RD−2 as x1, . . . , xD−2, while xD = t. The direction z is periodic with

period L. We also define the radial coordinate r by r2 = (x1)2 + · · · + (xD−2)2.

The nonuniform black string solutions presented in this paper are found within the

metric ansatz1

ds2 = −e2A(r,z)f(r)dt2 + e2B(r,z)

(

dr2

f(r)
+ dz2

)

+ e2C(r,z)r2dΩ2
D−3 , (2.2)

where

f = 1 −
(r0

r

)D−4
.

The Einstein equations Gt
t = 0, Gr

r + Gz
z = 0 and Gθ

θ = 0 (where θ denotes an angle of

the D − 3 dimensional sphere) then yield for the functions A, B, C the set of equations

[4]

A′′ +
Ä

f
+ A′2 +

Ȧ2

f
+ (D − 3)

(

A′C ′ +
ȦĊ

f
+

A′

r
+

f ′C ′

2f
+

f ′

2rf

)

+
f ′′

2f
+

3f ′A′

2f
= 0,

B′′ +
B̈

f
+

(D − 3)(D − 4)

2r2

(

−1 +
e2B−2C

f
− r2Ċ2

f
− 2rC ′ − r2C ′2

)

(2.3)

−(D − 3)

(

f ′

2rf
+

ȦĊ

f
+

A′

r
+

f ′C ′

2f
+ A′C ′

)

+
f ′B′

2f
= 0,

C ′′ +
C̈

f
+ (D − 3)

(

C ′2 +
Ċ2

f
+

2C ′

r

)

+
(D − 4)

r2

(

1 − e2B−2C

f

)

+
f ′

rf
+

ȦĊ + f ′C ′

f
+

A′

r
+ A′C ′ = 0,

where a prime denotes ∂/∂r, and a dot ∂/∂z.

The remaining Einstein equations Gr
z = 0, Gr

r −Gz
z = 0 yield two constraints. Follow-

ing [4], we note that setting Gt
t = Gθ

θ = Gϕ
ϕ = Gr

r + Gz
z = 0 in ∇µGµr = 0 and ∇µGµz = 0,

we obtain

∂z

(√−gGr
z

)

+
√

f∂r

(

√

f
√−g

1

2
(Gr

r − Gz
z)

)

= 0, (2.4)

√

f∂r

(√−gGr
z

)

− ∂z

(

√

f
√−g

1

2
(Gr

r − Gz
z)

)

= 0,

and, defining r̂ via ∂/∂r̂ =
√

f∂/∂r, then yields the Cauchy-Riemann relations

∂z

(√−gGr
z

)

+ ∂r̂

(

√

f
√−g

1

2
(Gr

r − Gz
z)

)

= 0, (2.5)

∂r̂

(√−gGr
z

)

− ∂z

(

√

f
√−g

1

2
(Gr

r − Gz
z)

)

= 0.

1An ansatz involving only two undetermined functions was suggested in [15] for a special coordinate

choice. However, we could not obtain numerical solutions of the Einstein equations within that reduced

ansatz.
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Thus the weighted constraints satisfy Laplace equations, and the constraints are fulfilled,

when one of them is satisfied on the boundary and the other at a single point [4].

The event horizon resides at a surface of constant radial coordinate r = r0 and is char-

acterized by the condition f(r0) = 0. Introducing the coordinate r̃, where r =
√

r2
0 + r̃2,

the horizon resides at r̃ = 0.

Utilizing the reflection symmetry of the nonuniform black strings w.r.t. z = L/2, the

solutions are constructed subject to the following set of boundary conditions

A|r̃=∞ = B|r̃=∞ = C|r̃=∞ = 0, (2.6)

A|r̃=0 − B|r̃=0 = d0, ∂r̃A|r̃=0 = ∂r̃C|r̃=0 = 0, (2.7)

∂zA|z=0,L/2 = ∂zB|z=0,L/2 = ∂zC|z=0,L/2 = 0, (2.8)

where the constant d0 is related to the Hawking temperature of the solutions. Regularity

further requires that the condition ∂r̃B|r̃=0 = 0 holds for the solutions. The boundary

conditions guarantee, that the constraints are satisfied, since
√−gGr

z = 0 everywhere on

the boundary, and
√

f
√−g(Gr

r − Gz
z) = 0 on the horizon.

2.2 Properties of the solutions

For any static spacetime which is asymptotically MD−1×S1 one can define a mass M and

a tension T [16], these quantities being encoded in the asymptotics of the metric potentials.

As discussed in [17], [18], the asymptotic form of the relevant metric components of any

static solution is

gtt ' −1 +
ct

rD−4
, gzz ' 1 +

cz

rD−4
. (2.9)

When computing M , T or the gravitational action, the essential idea is to consider the

asymptotic values of the gravitational field far away from the black string and to compare

them with those corresponding to a gravitational field in the absence of the black string.

Therefore, this prescription provides results that are relative to the choice of a reference

background, whose obvious choice in our case is MD−1 × S1.

The mass and tension of black string solutions as computed in [17, 19] are given by

M =
ΩD−3L

16πG
((D − 3)ct − cz), T =

ΩD−3

16πG
(ct − (D − 3)cz) , (2.10)

where ΩD−3 is the area of the unit SD−3 sphere. The corresponding quantities of the

uniform string solution M0 and T0 are obtained from (2.10) for cz = 0, ct = rD−4
0 . One can

also define a relative tension n (also called the relative binding energy or scalar charge)

n =
T L

M
=

ct − (D − 3)cz

(D − 3)ct − cz
. (2.11)

which measures how large the tension is relative to the mass. This dimensionless quantity

is bounded, 0 ≤ n ≤ D− 3. Uniform string solutions have relative tension n0 = 1/(D− 3).

Another useful quantity is the rescaled dimensionless mass

µ =
16πGM

LD−3
. (2.12)
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The Hawking temperature and entropy of the black string solutions are given by

T = eA0−B0T0 , S = S0
1

L

∫ L

0
eB0+(D−3)C0dz, (2.13)

where T0, S0 are the corresponding quantities of the uniform solution

T0 =
D − 4

4πr0
, S0 =

1

4
LΩD−3r

D−3
0 , (2.14)

and A0(z), B0(z), C0(z) are the values of the metric functions on the event horizon r = r0.

Together with the mass M and relative tension n, these quantities obey the Smarr

formula [17]

TS =
D − 3 − n

D − 2
M . (2.15)

Note that the relations (2.9)–(2.12) and (2.15) are also valid for black hole solutions.

Black string thermodynamics can be discussed by employing the very general connec-

tion between entropy and geometry established in the Euclidean path integral approach to

quantum gravity [14]. In this approach, the partition function for the gravitational field is

defined by a sum over all smooth Euclidean geometries which are periodic with a period

β in imaginary time. This integral is computed by using the saddle point approximation,

and the energy and entropy of the solutions are evaluated by standard thermodynamic

formulae.

We consider a canonical ensemble with Helmholz free energy (thus at fixed temperature

and extradimension length)

F [T,L] =
I

β
= M − TS . (2.16)

The Euclidean action of the vacuum solutions computed by subtracting the background

contribution is

I =
1

16πG
βΩD−3(ct − cz) =

β

D − 2
(M + T L), (2.17)

with β = 1/T .

The first law of thermodynamics reads

dM = TdS + T dL. (2.18)

It follows that

S = −
(

∂F

∂T

)

L

, T = −
(

∂F

∂L

)

T

. (2.19)

Combining the Smarr formula (2.15) and the first law, it follows that, given a curve n(µ)

in the (n, µ)-plane, the entire thermodynamics can be obtained [17].

We remark also that the Einstein equations (2.3) are left invariant by the transforma-

tion r → kr, z → kz, r0 → r0/k, with k an arbitrary positive integer. Therefore, one may

generate a family of vacuum solutions in this way, termed copies of solutions. The new

solutions have the same length of the extradimension. Their relevant properties, expressed

in terms of the corresponding properties of the initial solution, read

Mk =
M

kD−4
, Tk = kT, Sk =

S

kD−3
, nk = n. (2.20)

This transformation, suggested first by Horowitz [20], has been discussed in [21] for D = 6.
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2.3 A counterterm approach

Similar results for the black strings’ mass, tension and action are obtained by using the

quasilocal tensor of Brown and York [22], augmented by the counterterms formalism. This

technique consists in adding suitable counterterms Ict to the action of the theory. These

counterterms are built up with curvature invariants of the induced metric on the bound-

ary ∂M (which is sent to infinity after the integration) and thus obviously they do not

alter the bulk equations of motion. By choosing appropriate counterterms which cancel

the divergencies, one can then obtain well-defined expressions for the action and the en-

ergy momentum of the spacetime. Unlike the background substraction, this procedure is

satisfying since it is intrinsic to the spacetime of interest and it is unambiguous once the

counterterm is specified. While there is a general algorithm to generate the counterterms

for asymptotically (anti-)de Sitter spacetimes, the asymptotically flat case is less-explored

(see however [23] and the more general approach in recent work [24]).

It is also important to note that the counterterm method gives results that are equiv-

alent to what one obtains using the background subtraction method. However, we employ

it because it appears to be a more general technique than background subtraction, and it

is interesting to explore the range of problems to which it applies.

Therefore, we add the following counterterm part to the action principle (2.1)

Ict = − 1

8πG

∫

∂M
dD−1x

√
−h

√

D − 3

D − 4
R, (2.21)

where R is the Ricci scalar of the boundary geometry.

Varying the total action with respect to the boundary metric hij , we compute the

boundary stress-tensor

Tij =
2√
−h

δI

δhij
=

1

8πG

(

Kij − hijK − Ψ(Rij −Rhij) − hij¤Ψ + Ψ;ij

)

, (2.22)

where Kij is the extrinsic curvature of the boundary and Ψ =
√

D−3
(D−4)R .

Provided the boundary geometry has an isometry generated by a Killing vector ξi, a

conserved charge

Qξ =

∮

Σ
dD−2Si ξjTij (2.23)

can be associated with a closed surface Σ. Physically, this means that a collection of

observers on the boundary with the induced metric hij measure the same value of Qξ.

The mass and tension are the charges associated to ∂/∂t and ∂/∂z, respectively (note

that ∂/∂z is a Killing symmetry of the boundary metric). The relevant components of the

boundary stress tensor are

T t
t =

1

16πG

(D − 3)ct − cz

rD−3
+ O(1/rD−2), T z

z =
1

16πG

ct − (D − 3)cz

rD−3
+ O(1/rD−2).

(2.24)

The mass and tension computed from (2.23) agree with the expressions (2.10).2

2Note that in computing T , one should consider the integration over Ŝz = Sz/∆t, with ∆t =
R

dt.

However, a similar problem appears also in the Hamiltonian approach [19].
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One should remark that the counterterm choice is not unique, other choices being

possible as well (see [25] for a related discussion). Our choice of using (2.21) was motivated

by the fact that the general expression for the boundary stress-tensor is very simple. For

an asymptotically MD−1 × S1 spacetime, we find that Ict (2.21) or other possible choices

proposed in [23] regularizes also the black strings Euclidean action, yielding similar results

to those obtained within the background subtraction approach.

2.4 Remarks on nonuniform bubble-like solutions

There is a also a simple way to generate time dependent solutions with a nontrivial ex-

tradimension dependence. A Lorentzian solution of the vacuum Einstein equations is

found by using the following analytic continuation in the general configuration (2.2) (with

dΩ2
D−3 = dθ2 + sin2 θdΩ2

D−4)

t ≡ iχ, θ − π/2 ≡ iτ. (2.25)

The new solution reads

ds2 = e2A(r,z)f(r)dχ2 + e2B(r,z)

(

dr2

f(r)
+ dz2

)

+ e2C(r,z)r2(−dτ2 + cosh2 τdΩ2
D−4), (2.26)

with A(r, z), B(r, z), C(r, z) and f(r) the functions of the black string configuration.

This technique of double analytic continuation was originally developed for the study

of the stability of the KK vacuum [26, 27], and has been considered in the last years by

many authors in AdS/CFT context (see e.g. [28]).

However, the solution one finds starting with a nonuniform vacuum black string has

some new features, as compared to the Schwarzschild-Tangherlini seed solution. In that

case, the resulting spacetime describes a contracting and then expanding ”bubble of noth-

ing”. The new configuration (2.26) has now two compact extradimensions z and χ. The

radial variable r is restricted to the range r ≥ r0. r = r0 is not the boundary of spacetime,

but it is the SD−4×S1 of minimal area. The curves at r = r0 with constant z (and constant

points on SD−4) are geodesics. Also, regularity at r = r0 requires χ to be periodic with

period β = 1/T , with T given by (2.13). One can see that the geometry traced out by the

r = r0 surface is the (D − 3)-dimensional de Sitter spacetime with a z−dependent con-

formal factor, times the extradimension. Thus (2.26) would rather describe a nonuniform

”vortex of nothing”.

One can use the same techniques as in section 4 to find the corresponding D−dimensio-

nal solutions in Einstein-Maxwell-dilaton theory.

KK bubble solutions in d = 5, 6 dimensions have been also considered in ref. [29]. A

number of exact solutions have been presented there, describing sequences of KK bubbles

and black holes, placed alternately so that the black holes are held apart by the bubbles.

However, the configurations in [29] differ from (2.26), since they are static and asymptoti-

cally approach Minkowski spacetime times a circle.

– 7 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
6

3. Numerical nonuniform black string solutions

3.1 Numerical procedure

Our main concern here is the numerical construction of nonuniform black string solutions

in D = 5 dimensions. We have also constructed nonuniform black string solutions in D = 6

dimensions, reproducing and extending the known set of solutions, obtained previously by

different methods, which could not be successfully applied in D = 5 dimensions [4, 6 – 8].

To obtain nonuniform black string solutions, we solve the set of three coupled non-

linear elliptic partial differential equations numerically [30], subject to the above boundary

conditions. We employ dimensionless coordinates r̄ and z̄,

r̄ = r̃/(1 + r̃), z̄ = z/L, (3.1)

where the compactified radial coordinate r̄ maps spatial infinity to the finite value r̄ = 1,

and L is the asymptotic length of the compact direction. The numerical calculations

are based on the Newton-Raphson method and are performed with help of the program

FIDISOL [30], which provides also an error estimate for each unknown function.

The equations are discretized on a non-equidistant grid in r̄ and z̄. Typical grids

used have sizes 65 × 50, covering the integration region 0 ≤ r̄ ≤ 1 and 0 ≤ z̄ ≤ 1/2.

(See [30] and [31] for further details and examples for the numerical procedure.) For the

nonuniform strings the estimated relative errors range from approximately ≈ 0.001% for

small geometric deformation to ≈ 1% for large deformation. Further discussion of the

numerical accuracy is deferred to the appendix.

The horizon coordinate r0 and the asymptotic length L of the compact direction enter

the equations of motion as parameters. The results presented are mainly obtained with

the parameter choice

r0 = 1 , L = Lcrit =

{

7.1713 D = 5

4.9516 D = 6
, (3.2)

where Lcrit represents the value, where the instability of the uniform string occurs. The

branch of nonuniform strings is then obtained by starting at the critical point of the uniform

string branch and varying the boundary parameter d0, which enters the eq. (2.7), relating

the values of the functions A and B at the horizon.

3.2 Black string properties

Let us first consider the metric functions A, B and C for nonuniform string solutions

as functions of the radial coordinate r and of the coordinate z of the compact direction.

Keeping the asymptotic length L of the compact direction and the horizon coordinate

r0 fixed, the solutions change smoothly with boundary parameter d0. A measure of the

deformation of the solutions is given by the nonuniformity parameter λ [3]

λ =
1

2

(Rmax

Rmin
− 1

)

, (3.3)
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Figure 1: The metric functions A, B and C of the D = 5 nonuniform string solutions are shown

as functions of the radial coordinate r, with the horizon located at r0 = 1, and the coordinate

z of the compact direction with asymptotic length L = Lcrit = 7.1713, for several values of the

nonuniformity parameter, λ = 1 (first column), λ = 2 (second column), λ = 5 (third column),

λ = 9 (forth column).

where Rmax and Rmin represent the maximum radius of a (D − 3)-sphere on the horizon

and the minimum radius, being the radius of the ‘waist’. Thus for uniform black strings

λ = 0, while the conjectured horizon topology changing transition should be approached for

λ → ∞ [7, 6]. As d0 first increases and then decreases again, the nonuniformity parameter

λ increases monotonically.

In figure 1 we exhibit the metric functions for D = 5 nonuniform string solutions for

several values of the nonuniformity parameter, λ = 1, 2, 5, 9. The functions exhibit

extrema on the symmetry axis z = 0 at the horizon. As λ increases, the extrema increase

– 9 –



J
H
E
P
0
6
(
2
0
0
6
)
0
1
6

λ=5.0

-3 -2 -1  0  1  2  3z  1
 2

 3
 4

 5
 6

r

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

A(r,z)

λ=9.0

-3 -2 -1  0  1  2  3z  1
 2

 3
 4

 5
 6

r

-0.5

 0

 0.5

 1

 1.5

 2

A(r,z)

λ=5.0

-3 -2 -1  0  1  2  3z  1
 2

 3
 4

 5
 6

r

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

B(r,z)

λ=9.0

-3 -2 -1  0  1  2  3z  1
 2

 3
 4

 5
 6

r

-0.5

 0

 0.5

 1

 1.5

 2

B(r,z)

λ=5.0

-3 -2 -1  0  1  2  3z  1
 2

 3
 4

 5
 6

r

-2
-1.5

-1
-0.5

 0
 0.5

 1

C(r,z)

λ=9.0

-3 -2 -1  0  1  2  3z  1
 2

 3
 4

 5
 6

r

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

C(r,z)

Figure 1: Figure 1 continued.

in height and become increasingly sharp (implying a deteriorating numerical accuracy for

large values of λ).

To obtain a more quantitative picture of the metric functions, we exhibit −gtt/f = e2A,

gzz = e2B , and gθθ/r
2 = e2C in figure 2 for several fixed values of z.

The spatial embedding of the horizon into 3-dimensional space is shown in figure 3

for the D = 5 nonuniform black string solutions. In these embeddings the proper radius

of the horizon is plotted against the proper length along the compact direction, yielding a

geometrical view of the nonuniformity of the solutions.

The deformation of the horizon of the D = 5 nonuniform black string solutions is

further explored in figure 4. The maximum radius of the 2-sphere on the horizon Rmax and

the minimum radius Rmin representing the ‘waist’ are presented together with the proper
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Figure 2: The metric functions e2A, e2B, and e2C of the D = 5 nonuniform string solutions

are shown as functions of the compactified radial coordinate x = r̄, for several fixed values of

the coordinate z of the compact direction (z/L = 0, 0.1, 0.2, 0.3, 0.4, 0.5), as well as of the

nonuniformity parameter λ (λ = 1 (first column), λ = 2 (second column), λ = 5 (third column),

λ = 9 (fourth column)).

length LH of the horizon along the compact direction as functions of the nonuniformity

parameter λ, ranging from 0 ≤ λ ≤ 9.

With increasing λ, Rmax first increases, reaches a maximum around λ ≈ 4 and then de-

creases slightly again towards still larger values of the nonuniformity parameter; in contrast

LH/L increases monotonically and Rmin decreases monotonically (in the range considered).

We expect that Rmax and LH/L approach finite values in the limit λ → ∞, whereas Rmin

should reach zero in this limit, when extrapolated (approximately linearly) in the figure.

For comparison, we also show in the figure the corresponding geometric quantities of the
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Figure 2: Figure 2 continued.

D = 6 nonuniform black string solutions.

We exhibit in figure 5 the mass M , the relative tension n, the temperature T and

the entropy S of the D = 5 and D = 6 nonuniform string solutions, in units of the

corresponding uniform string solution, versus the nonuniformity parameter λ. Interestingly,

the mass and the entropy assume a maximal value in the vicinity of λ ≈ 4, while the tension

and the temperature assume a minimal value, both in 5 and in 6 dimensions. Since the

extrema appear only around λ ≈ 4, which is the maximal value of λ obtained in previous

calculations [6], they were not recognized there. Extrapolating these quantities to λ → ∞
yields for the tension the critical value n∗, where n∗/n0 ≈ 0.8 for D = 5 and n∗/n0 ≈ 0.6

in six spacetime dimensions.

The mass and tension exhibited in figure 5 are obtained from the 1st law of thermo-
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Figure 3: The spatial embedding of the horizon of D = 5 nonuniform black string solutions with

horizon coordinate r0 = 1 and asymptotic length of the compact direction L = Lcrit = 7.1713, is

shown for several values of the nonuniformity parameter, λ = 0.5, 1, 2, 3, 5, 9.

dynamics together with the Smarr relation (2.15). A discussion of the mass and the string

tension as obtained from the asymptotic fall-off of the metric functions is given in the

appendix.

3.3 Black strings and black holes

In D = 6 dimensions, evidence was provided that the nonuniform string branch and the

black hole branch merge at a topology changing solution [8]. We would now like to recon-

sider this evidence in the light of the continuation of the D = 6 nonuniform string branch to

larger deformations, and further address the question, whether there is analogous evidence

in D = 5 dimensions.
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functions of 1/(1 + λ).
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Figure 5: The mass M , the relative tension n, the temperature T and the entropy S of the D = 5

(a) and D = 6 (b) nonuniform string solutions are shown in units of the corresponding uniform

string solution (denoted by M0, n0, T0, and S0) as functions of 1/(1 + λ).

We therefore exhibit in figure 6 the mass M versus the relative string tension n, for

the nonuniform string branch as well as for the black hole branch in 5 and 6 dimensions.

The black hole data are taken from [8]. First of all we note qualitative agreement of the

shape and the relative position of the nonuniform string branch and the black hole branch

in 5 dimensions with the shape and relative position of the corresponding branches in 6

dimensions. But compared to the data and discussion given in [8], we here observe a new

feature: the backbending of the nonuniform string branch at a critical (minimal) value

of the relative string tension nb. Although the onset of this backbending can already be

anticipated in the D = 6 data of [8]. But the backbending of the nonuniform string branch

at nb is still in accordance with the conjecture of a topology changing transition, occurring

at n∗ > nb, both in 5 and 6 dimensions.

We attribute the presence of the gap between the black hole branch and the nonuniform

string branch mainly to insufficient numerical data of the black hole branch close to the
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Figure 6: The mass M of the D = 5 (a) and D = 6 (b) nonuniform string and black hole

branches is shown versus the relative string tension n. M and n are normalized by the values of

the corresponding uniform string solutions. Here and in figures 7–11, the data for the black hole

branches is from [8].

anticipated transition point. At such a transition point the nonuniform string parameter

Rmin must approach zero (see figure 4), and likewise the black hole parameter Laxis must

approach zero, where Laxis measures the proper length along the exposed symmetry axis [8].

We note, that close to the anticipated transition point, Rmin has decreased considerably

farther (at the last numerically obtained point of the nonuniform string branch), than Laxis

(at the last numerically obtained point of the black hole branch).

Since Laxis has decreased farther for D = 6 black holes than for D = 5 black holes,

the gap between the branches is smaller in 6 dimensions than in 5 dimensions. We exhibit

Rmin, Rmax, and Laxis as well as the black hole equatorial radius Req in figure 7 for D =

5 and D = 6 solutions. Rmin and Rmax both exhibit the backbending feature present

for nonuniform string solutions at large deformations. The figure is consistent with the

vanishing of Laxis and Rmin at the same critical value of n. There Req and Rmax should

also merge. The transition might then occur in the vicinity of n∗/n0 ≈ 0.8 for D = 5

and n∗/n0 ≈ 0.6 for D = 6 (as opposed to nb/n0 ≈ 0.55 for D = 6, which was earlier

assumed to be the transition point [8], but which is now realized to be the point where the

backbending occurs). Extrapolating the black hole branch towards this critical value, the

Req curve appears to smoothly reach the endpoint of the (backbending) upper part of the

Rmax curve of the nonuniform string branch. The black hole data are again taken from [8].

Addressing the thermodynamic properties of the solutions, we exhibit in figure 8 and

figure 9 the temperature and the entropy of D = 5 and D = 6 nonuniform strings and

black holes. Extrapolating the black hole branch towards the critical value n∗, where the

transition might occur, the black hole curves for temperature and entropy also appear

to smoothly reach the endpoints of the corresponding (backbending) upper parts of the

nonuniform string branch. This also holds for the mass, of course. Again, the black hole

data are from [8].

For very small masses localized black holes are entropically favoured, and for very large

masses only uniform strings exist [8]. When the entropy is plotted versus the mass for the

black hole branch and the uniform and nonuniform string branches, one observes, that the
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uniform strings become entropically favoured at a certain value of the mass, lying above

the critical string mass and below the maximum black hole mass [8]. This is illustrated in

figure 10 for solutions in five and six dimensions.

Concluding, we observe qualitative agreement of all the physical properties of the

solutions in 5 and in 6 dimensions. This strongly suggests, that the same phenomenon

is present in both cases. In particular, all data are consistent with the conjecture that

the black hole branch and the nonuniform string branch merge in a topology changing

transition. Our new nonuniform string solutions give further credence to this scenario, but

they still cannot confirm it.

4. Black string solutions in Einstein-Maxwell-dilaton theory

We now consider the action describing a gravitating Maxwell field coupled with a dilaton

in a D−dimensional spacetime

I =
1

16πG

∫

dDx
√−g

(

R − 1

2
gµν∂µφ∂νφ − 1

4
e−2aφF 2

)

, (4.1)
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Figure 10: The product of entropy and mass SM−3/2 (a) and SM−4/3 (b) for the D = 5 (a) and

D = 6 (b) nonuniform string branch, the uniform string branch and the black hole branch is shown

as a function of the mass (in units of the corresponding critical string quantities). The horizontal

lines represent the curves for the corresponding Schwarzschild-Tangherlini solutions.

where F = dA. The free parameter a governs the strength of the coupling of the dilaton

to the Maxwell field.

The corresponding Einstein-Maxwell-dilaton (EMD) field equations are

Rµν − 1

2
Rgµν =

1

2
Tµν ,

∇2φ = −a

2
e−2aφF 2, (4.2)

∂µ(
√−ge−2aφFµξ) = 0.

with stress-energy tensor

Tµν = T (d)
µν + T (em)

µν ,

T (d)
µν = ∂µφ∂νφ − 1

2
gµν |∂φ|2, (4.3)

T (em)
µν = e−2aφ(FµβFνγgβγ − 1

4
gµνF 2).
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Finding nonuniform black string and black hole solutions of these equations for a compact

extradimension constitutes a formidable technical task. However, it appears possible to

use the ’hidden’ symmetries of the model (4.1) arising in the dimensionally reduced theory

in order to generate nontrivial EMD solutions without actually solving the full set of

equations.

This technique, known for the D = 4 Einstein-Maxwell theory since long, was gener-

alized in the last years to higher dimensions and various other matter fields. In this paper,

we’ll follow the approach in [13], supposing the existence of one Killing vector ∂/∂y, and

write the D−dimensional line element in the form3

ds2 = gyy(x)dy2 + hij(x)dxidxj , (4.4)

performing the KK reduction with respect to the y−direction. As proven in [13], the

reduced action corresponds to a non-linear σ-model, whose target space possesses a rich

geometric structure. These symmetries imply the existence of a Harrison transformation

nontrivially acting on the spacetime variables and matter fields. As a result, one may

generate nontrivial solutions of the D−dimensional EMD equations starting with known

vacuum configurations. A detailed description of this procedure and the explicit form of the

Harrison transformation is given in ref. [13] (see also the results in [32]). This approach is

valid for any value of the dilaton coupling constant (in particular also for Einstein-Maxwell

theory, i.e., for a = 0, φ = 0), and appears to be different from other results in literature.

Ref. [33], for example, “charges up” the neutral KK solutions by uplifting them to eleven

dimensional M-theory and employing boost and U-duality transformations, which fixes a

particular value of the dilaton coupling constant a. The resulting solutions of type IIA/B

string theory describe non-extremal p-branes on a circle.

Here we present only the resulting solutions, which have rather different properties,

depending whether ∂/∂y is a timelike or spacelike Killing vector. Although the same

generation techniques apply also for black hole solutions, we’ll restrict to the black string

case.

4.1 Asymptotically MD−1 × S1 EMD black string solutions

We start with a vacuum black string solution, written in the following form

ds2 = −V (x)dt2 + hij(x)dxidxj , (4.5)

where ∂/∂t is a timelike Killing vector.

The Harrison transformation in this case generates a one parameter family of black

string solution in EMD theory, with line element

ds2 = −V (cosh2 β − sinh2 βV )−2α(D−3)dt2 + (cosh2 β − sinh2 βV )2αhijdxidxj , (4.6)

3Note that the ref. [13] discusses a more general case, with an action principle containing a (d + 1)-

differential form. Therefore, the general metric ansatz (4.4) will contain a set of d-coordinates yi.
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and matter fields

Aµ =
√

2(D − 2)α
tanh β eaφ0V

cosh2 β − sinh2 βV
δµt, (4.7)

φ = φ0 − 2a(D − 2)α log(cosh2 β − sinh2 βV ),

where β, φ0 are arbitrary real constants and

α = (2a2(D − 2) + D − 3)−1. (4.8)

For Einstein-Maxwell theory, we find α = 1/(D−3), the corresponding value in the Kaluza-

Klein case being α = 1/(2(D − 2)).

Both uniform and nonuniform solutions of the EMD theory can be generated in this

way. For example, the uniform string solution constructed within the metric ansatz (2.2)

reads

ds2 = − f(r)
(

1 +
(

r0

r

)D−4
sinh2 β

)2α(D−3)
dt2+

(

1+
(r0

r

)D−4
sinh2 β

)2α

×

×
(

dr2

f(r)
+ dz2 + r2dΩ2

D−3

)

, (4.9)

Aµ =
√

2(D − 2)α
tanh β eaφ0f(r)

1 + ( r0

r )D−4 sinh2 β
δµt, (4.10)

φ = φ0 − 2a(D − 2)α log

(

1 +
(r0

r

)D−4
sinh2 β

)

.

For all a, the surface r = r0 is an event horizon, while r = 0 is a curvature singularity. The

extremal limit is found by taking β → ∞ together with a rescaling of r0 and has the form

ds2 = −
(

1 +
(c

r

)D−4
)−2α(D−3)

dt2 +

(

1 +
(c

r

)D−4
)2α (

dr2

f(r)
+ dz2 + r2dΩ2

D−3

)

,

Aµ =

√

2(D − 2)α eaφ0

1 + ( c
r )D−4

δµt, φ = φ0 − 2a(D − 2)α log

(

1 +
(c

r

)D−4
)

, (4.11)

c being a real constant. Solutions describing several extremal black strings do also exist [20].

Returning to the general nonuniform string case, we observe that its relevant properties

can be derived from the corresponding D−dimensional vacuum solution. The first thing

to note is that the causal structure of the region r > r0 is similar to the vacuum solutions;

in particular one finds the same location of the event horizon. For the metric ansatz (2.2),

the spacetime still approaches the MD−1 × S1 background as r → ∞, while the matter

fields behave asymptotically as

At ' Φ +
Qe

rD−3
, φ ' φ0 +

Qd

rD−3
, (4.12)

where Qe and Qd correspond, in a suitable normalization, to the electric and the dila-

ton charges, respectively, Φ being the electrostatic potential difference between the event
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horizon and infinity,

Φ =
√

2(D − 2)α eaφ0 tanh β,

Qe = −
√

2(D − 2)α eaφ0 sinh β cosh β ct, (4.13)

Qd = −2aα(D − 2) sinh2 βct.

The mass M̄ , the string tension T̄ and the relative string tension n̄ of the EMD solutions

are

M̄ = M(1 + 2(D − 3 − n)α sinh2 β),

T̄ = T , (4.14)

n̄ =
n

1 + 2(D − 3 − n)α sinh2 β
.

The electric charge and the dilaton charge can also be expressed via (note also that the

dilaton charge is not an independent quantity)

Qe = −M(D − 3 − n)

(D − 4)

√

α

2(D − 2)
eaφ0 sinh 2β, (4.15)

Qd = − 2aM

D − 4
(D − 3 − n)α sinh2 β.

The relation between Hawking temperature T̄ and the entropy S̄ of the EMD solutions

and the corresponding quantities T and S of the vacuum seed solution is

T̄ = T (cosh β)−2α(D−2), S̄ = S(cosh β)2α(D−2), (4.16)

thus the product TS remains invariant under the Harrison transformation.

The Smarr relation (2.15), derived in [17] for the vacuum case, admits a straightforward

generalization to EMD theory,

D − 3 − n

D − 2
M̄ = T̄ S̄ − (D − 3)(D − 4)

D − 2
ΦQ̃e, (4.17)

where Q̃e = ΩD−3LQe. Therefore the thermodynamics of the EMD solutions can be derived

from the vacuum solutions. When the parameter β is large one has a near extremal charged

black string. However, a discussion of the extremal limit seems to require knowledge of the

region r < r0 of the seed metric.

We conclude that every vacuum solution is associated with a family of charged so-

lutions, which depends on the parameter β. In particular, the branch of non-uniform

solutions emerging from the uniform black string at the threshold unstable mode thus

must persist for strings with non-zero electric charge. The fact that the ‘phase diagram’ of

static solutions is qualitatively unchanged as the charge varies strongly suggests that there

is still an instability for charged black strings [36, 35].

Also, a discussion of the thermodynamical properties of these solutions appears possi-

ble. This is interesting in connection with the Gubser-Mitra conjecture [34], that correlates

the dynamical and thermodynamical stability for systems with translational symmetry and
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infinite extent. This conjecture has been discussed by several authors in the last years (see

e.g. [35]–[37]). Ref. [35] uses the boost/duality transformation to map the phases of KK

solutions onto phases of non- and near-extremal Dp-branes with a circle in their trans-

verse space. The results there (see also [36]) confirm the validity of the Gubser-Mitra

conjecture for non-extremal smeared branes. Similar conclusions are found in ref. [37],

where a discussion of thermodynamical stability of charged black p−branes within third-

order perturbation theory is presented, the Gregory-Laflamme critical wavelength being

also determined.

Asymptotically MD−1 × S1 EMD black hole solutions can be generated by applying

the same approach, starting with vacuum seed solutions written in the form (4.5). The

resulting solutions are still given by (4.6)–(4.7), with the corresponding expressions of

V, hij . Similar to the black string case, their properties are completely determined by the

vacuum seed black hole solutions, the Smarr relation (4.17) being also satisfied.

4.2 Black strings in a background magnetic field

A rather different picture is found in the case when ∂/∂y in (4.4) is a spacelike Killing

vector. Here we start with a vacuum black string solution (2.2) written in the form

ds2 = −e2A(r,z)f(r)dt2 + e2B(r,z)

(

dr2

f(r)
+ dz2

)

+

+e2C(r,z)r2
(

dθ2 + sin2 θdϕ2 + cos2 θdΩ2
D−5

)

(4.18)

with θ ∈ [0, π/2], except for D = 5 where θ ∈ [0, π].

After applying a Harrison transformation to this configuration with respect to the

Killing vector ∂/∂y ≡ ∂/∂ϕ, one finds the following solution of the EMD equations

ds2 = Λ2α(r, z, θ)

(

−e2A(r,z)f(r)dt2 + e2B(r,z)

(

dr2

f(r)
+ dz2

)

(4.19)

+ e2C(r,z)r2(dθ2 + cos2 θdΩ2
D−5)

)

+
e2C(r,z)r2 sin2 θ

Λ2α(D−3)(r, z, θ)
dϕ2,

Aµ(r, z, θ) =
B0e

2C(r,z)r2 sin2 θ

Λ(r, z, θ)
δµϕ, (4.20)

φ(r, z, θ) = − 2a(D − 2)

2a2(D − 2) + D − 3
log Λ(r, z, θ), (4.21)

where

Λ(r, z, θ) = 1 +
B2

0(2a2(D − 2) + D − 3)

2(D − 2)
e2C(r,z)r2 sin2 θ, (4.22)

B0 is a free parameter which characterizes the central strength of the magnetic field, and

α is still given by (4.8).

One can easily see that this solution is, in terms of the usual definitions, a black string,

with an event horizon and trapped surfaces. Again, the causal structure of the solution is

not affected by the Harrison transformation.
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To clarify it’s asymptotics, we note that for r → ∞, the line element (4.19) approaches

the simpler form

ds2 = Λ2α(−dt2 + dρ2 + dz2 + dz2
1 + · · · + dz2

D−4) + Λ−2α(D−3)ρ2dϕ2 , (4.23)

Λ = 1 +
B2

0

2α(D − 2)
ρ2 ,

where we introduced the new coordinates {ρ, z1, . . . zD−4} satisfying r cos θ = (z2
1 + · · · +

dz2
D−4)

1/2, r sin θ = ρ, such that [d(r cos θ)]2 + (r cos θ)2dΩ2
D−5 = dz2

1 + · · · + dz2
D−4.

Therefore, asymptotically the solution (4.19) approaches the Melvin fluxbrane found

in [38], which represents a higher dimensional generalization of the four dimensional Melvin

solution. The Melvin magnetic universe is a regular and static, cylindrically symmetric so-

lution to Einstein-Maxwell(-dilaton) theory describing a bundle of magnetic flux lines in

gravitational-magnetostatic equilibrium [39]. This solution has a number of interesting fea-

tures, providing the closest approximation in general relativity for a uniform magnetic field.

There exists a fairly extensive literature on the properties of this magnetic universe, of par-

ticular interest being the black hole solutions in universes which are asymptotically Melvin

[40]. Black hole solutions in a higher dimensional Melvin universe have been constructed

recently in [41].

Therefore, it is natural to interpret the EMD solution (4.19) as describing a black

string in an external magnetic field. Note that, similar to the asymptotically MD−1 × S1

case, one may generate also KK black hole solutions in a Melvin fluxbrane background.

One can compute the mass and tension of the black string solutions by using the

background subtraction approach. In this case, the natural background is the Melvin solu-

tion (4.23). It follows that, different from the case of asymptotically MD−1 ×S1 solutions,

these quantities are still given by (2.10). Moreover, it can be proven that the thermody-

namic properties of the black string EMD solutions are unaffected by the external magnetic

field, i.e. one finds the same expressions for the Hawking temperature and entropy as in

the B0 = 0 no magnetic field case. A similar property has been noticed in [42] for a

D = 4 Schwarzschild black hole in a Melvin universe background (see also the D > 4 ex-

tensions [41]). Therefore, this seems to be a generic property of uncharged black hole/black

string solutions in a background magnetic field extending to infinity. Heuristically, this is

due to the fact that, in the static case, the mass-point/string source of these configurations

does not interact directly with the background magnetic field.

5. Conclusions

Our first concern has been the numerical construction of D = 5 nonuniform strings, rep-

resenting solutions of the vacuum Einstein equations. While their physical properties are

similar to those of D = 6 nonuniform strings, their construction is more difficult. We

attribute this to the slower asymptotic fall-off of the metric functions.

The branch of nonuniform strings emerges smoothly from the uniform string branch

at the critical point, where its stability changes [1]. Keeping the horizon coordinate r0 and

the asymptotic length L of the compact direction fixed, the solutions depend on a single
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parameter, specified via the boundary conditions. Varying this parameter, the nonuniform

strings become increasingly deformed, as quantified by the nonuniformity parameter λ. For

the largest value of λ reached, the ‘waist’ of the string has a minimal radius of Rmin ≈ 0.1

(Rmin ≈ 0.13) for λ = 9 (λ = 6) in D = 5 (D = 6) dimensions, indicating that it is

shrinking towards its asymptotic value of zero when λ → ∞.

Previously, in D = 6 dimensions, evidence was provided that the nonuniform string

branch and the black hole branch merge at a topology changing transition [8]. Although

we see a backbending of the nonuniform string branch in both D = 5 and D = 6 di-

mensions, not observed previously, because the nonuniform string branch had not been

continued to sufficiently high deformation, all our data are consistent with the assumption,

that the nonuniform string branch and the black hole branch merge at such a topology

changing transition. In fact, extrapolation of the black hole branch towards this transition

point appears to match well the (extrapolated) endpoint of the (backbending) part of the

nonuniform string branch.

For the phase diagram this would mean that we would have a region 0 < n < nb

with one branch of black hole solutions, then a region nb < n < n∗ with one branch of

black hole solutions and two branches of nonuniform string solutions, the ordinary one

and the backbending one, and finally a region n∗ < n < n0 with only one branch of

nonuniform string solutions. (We here do not address the bubble-black hole sequences

present for n > n0). Thus the topology changing transition would be associated with n∗,

and nb < n < n∗ would represent a middle region where three phases would coexist, one

black hole and two nonuniform strings. This anticipated phase diagram is exhibited in

figure 11.

This is strongly reminiscent of the phase structure of the rotating black ring-rotating

black hole system in D = 5 [43]. The (asymptotically flat) rotating black holes have S3

horizon topology, and the (asymptotically flat) rotating black rings have S2 × S1 horizon

topology. The rotating black holes exist up to a maximal value of the angular momentum

(for a given mass), 0 < J < J∗, the rotating black rings are present only above a minimal

value of the angular momentum (for a given mass), Jb < J , and in the middle region

Jb < J < J∗ three phases coexist, one black hole and two black rings [43].

Further numerical work for nonuniform strings and in particular for black holes in the

critical region close to n∗ might confirm this picture further, and it might lead to further

insight into the structure of the configuration space. The backbending of the nonuniform

string branch clearly indicates that the configuration space is richer close to the anticipated

topology changing transition, which currently still invites speculations [10, 44].

Our second concern has been the construction of black strings in EMD theory, obtained

via a Harrison transformation. Different from other results in the literature (see e.g. [33]),

the construction we proposed in section 4 is valid for any value of the dilaton coupling

constant. Apart from asymptotically MD−1×S1 charged black strings, we found also black

string solutions in an external magnetic field. We found that the properties of these EMD

configurations can be derived from the corresponding D−dimensional vacuum solution.

To push forward our understanding of these issues, it would be interesting to find both

black hole and nonuniform black string branches for D > 6. The dimensions around D = 13
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Figure 11: The mass M of the D = 6 nonuniform string and black hole branches is shown versus

the relative string tension n. M and n are normalized by the values of the corresponding uniform

string solutions. The black hole branch is extrapolated towards the anticipated critical value n∗.

are of particular interest, since as found in [5], for D > 13 the perturbative nonuniform

strings are less massive than the uniform solutions. Moreover, their entropy is larger than

the entropy of uniform strings with the same mass.
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A. Numerical aspects

As noted before for black holes, the most error prone part of the numerical procedure is

the extraction of the mass M and the relative tension n from the asymptotic form of the

metric via the coefficients ct and cz [4, 6, 8]. Whereas this extraction is quite accurate

for nonuniform strings in 6 dimensions, it is quite problematic for nonuniform strings in 5

dimensions.

To see this we consider the asymptotic expansion for the metric functions in D = 5

dimensions.

A → A∞

r
, B → B∞

r
, C → C∞ ln r

r
, (A.1)

and in D = 6 dimensions

A → A∞

r2
, B → B∞

r2
, C → C∞

r
. (A.2)

In D = 5 the coefficients must satisfy C∞ = A∞ + 2B∞, a relation essential for the first

law to hold.
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Figure 12: The mass M (a) and relative tension n (b) of the D = 5 and D = 6 nonuniform string

branches are shown versus the nonuniformity parameter λ. The quantities are extracted from the

first law and the Smarr relation, as well as from the asymptotic coefficients at r̄ = 1.

In 6 dimensions the asymptotic fall-off is sufficiently fast, yielding excellent agreement

for the mass and tension as obtained from the expansion coefficients with those obtained

from the first law and the Smarr relation [6]–[8].

In 5 dimensions the numerical situation is much trickier, because of the presence of the

log term in the function C. This is aggravated by the fact, that the coefficient C∞ is an

order of magnitude smaller than the other two coefficients. We therefore do not see the log

dependence in the numerical results, when calculated in the full interval [0 ≤ r̄ ≤ 1], [0 ≤
z̄ ≤ 1]. To observe the log dependence, we must switch to a system of ordinary differential

equations after a certain value of r̄, beyond which the z̄-dependence has disappeared.

The coefficient ct is nevertheless obtained with good accuracy, since it is associated

with a conservation law, obtained from the equation for the metric function A eq. (2.3),

equivalent to the Smarr relation. The coefficient cz, in contrast, is error prone, since the

asymptotic fall-off of the function B is numerically not well determined. Reading off the

values of the coefficient cz at r̄ = 1 therefore leads to considerable disagreement of the

values of the mass and tension with those values obtained from the first law and the Smarr

relation. This is illustrated in figure 12.

Our final remarks concern the numerical method and the quality of the solutions.

For the construction of the numerical solutions we use Newton-Raphson iteration.

In each iteration step a correction to the initial guess configuration is computed. The

maximum of the relative defect decreases by a factor of 20 from one iteration step to

another. However, for large values of λ convergence is slower. In this case we re-iterate

the solution until the defect is small enough (about 10−4). Note, that this defect concerns

the discretised equations. The estimates of the relative error of the solution (truncation

error) are computed separately. They are of the order 0.001% for small λ, but increase up

to 1% close to the backbending point. On the second branch the errors first decrease with

increasing λ, but then increase again when the solutions become too steep at the waist.

The errors also depend on the order of consistency of the method, i.e. on the order of the

discretisation of derivatives. Usually 4th order gives reasonable results. For some solutions

we used 6th order to check the consistency with the 4th order solutions.
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We also monitored the violation of the constraints

C1 =
√

f
√−g(Gr

r − Gz
z), C2 =

√−gGz
z .

For small λ the maximum of the constraints is less then 0.1, but it increases with increasing

λ. The maximum of the constraint C2 is smaller by a factor of 5 compared to C1. On the

second branch the maximum is of the order one. However, this large value appears in the

vicinity of the waist (z = L/2 at the horizon), in a small region where the functions are

extremely steep. Away from this region the violation of the contraints remains small. We

also observed that the condition ∂B/∂r = 0 at the horizon is violated at the waist when

λ becomes large. (A similar remark has been made in [4].) The violation of the condition

∂B/∂r = 0 at the waist might be related to the violation of the constraints.

Increasing the number of grid points near z = L/2 yields smaller violation of the

constraints and the conditon ∂B/∂r = 0 at the horizon. Also, the violation of the constraint

C1 is of the same magnitude as the maximum of the equations with the same weighting.
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